Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale
نویسندگان
چکیده
In this study, a novel method of graphite chemical exfoliation to create graphene oxide (GO) is reported. Here, new oxidants were examined: a mixture of perchloric and nitric acids and potassium chromate. Furthermore, an effect of oxidation time, temperature of oxidation, and ultrasonication on graphite exfoliation degree was investigated. The obtained GOs were next reduced with glucose, used as a reducing agent. Detailed analysis of the materials indicated that when graphite was oxidized for 24 h at 50 °C, 5-layered graphene was prepared. An effect of sonication process was also examined, and it was found to enhance the exfoliation to bilayer graphene. Furthermore, when time and temperature were increased to 48 h and 100 °C, respectively, graphite was exfoliated to single-layer graphene. Therefore, it is believed that the proposed route can be applied for the preparation of graphene or few-layered graphene with defined number of layers upon the process parameters optimization and in a bulk scale. The materials were characterized with atomic force microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction.
منابع مشابه
Electrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملGraphene Oxide Synthesized by using Modified Hummers Approach
The graphite oxide was prepared by oxidizing purified natural flake graphite via modified Hummers method. The graphene oxide was prepared by graphite oxide exfoliating in distilled water with ultrasonic waves. Structural and physiochemical properties of the products were investigated with the help of ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ra...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملSynthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method
In this study, an efficient and facile technique for preparing graphene oxide in suspension and powder forms was presented based on a modification on Hummers' method followed by an additional ultrasonic process. The method involved the provision of graphene oxide from graphite by reaction of potassium permanganate and sulfuric acid with stabilizing the medium complex. Furthermore, this study ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2012